-28(x)+6(x)+8(x)^2=112

Simple and best practice solution for -28(x)+6(x)+8(x)^2=112 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -28(x)+6(x)+8(x)^2=112 equation:



-28(x)+6(x)+8(x)^2=112
We move all terms to the left:
-28(x)+6(x)+8(x)^2-(112)=0
determiningTheFunctionDomain 8x^2-28x+6x-112=0
We add all the numbers together, and all the variables
8x^2-22x-112=0
a = 8; b = -22; c = -112;
Δ = b2-4ac
Δ = -222-4·8·(-112)
Δ = 4068
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4068}=\sqrt{36*113}=\sqrt{36}*\sqrt{113}=6\sqrt{113}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-6\sqrt{113}}{2*8}=\frac{22-6\sqrt{113}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+6\sqrt{113}}{2*8}=\frac{22+6\sqrt{113}}{16} $

See similar equations:

| 12x(3.5)=108 | | 6x+5x-8=14 | | 4.9q-7.53=8.9q-3.5q+0.47 | | 32+4x-11=-5x+4-7x | | 9x+1=8x+12 | | -8x+4(1+5x)=2x+14 | | 120+100+100+120+x+(x+10)=720 | | -22(x)+8(x)^2=133 | | (x+10)(x+14)=(+14)(x-20) | | |r/9|=3 | | -2(x-7)+5=19 | | 6b-5b-b+7b-2=33 | | (x+3)÷2=(x+5)÷3 | | 2(8c-5)=4c | | 9x-11=10x | | 5r+1+4=0 | | 3x+4x-2=51 | | (-2a+7)(3a-5)=0 | | 3x-11=3x-20 | | 7+11=-3(3x-6) | | 0=x^2-9x-162 | | 553-265=48p | | -20-n=50 | | 5(4x+9)=-16+21 | | S*r+1+4=0 | | -6+5(1-z)=19 | | 2(3x-11)=2(20-3x) | | 9x+34=8x-25+8x-25 | | 3b+5b+3b-7b+5b=27 | | 1.12+1.25g=8.26 | | 9x=34=8x-25+8x-25 | | 8/9=x+1/3(7)= |

Equations solver categories